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Introduction. For the past several years, research in our laboratory has

been directed at obtaining an understanding of the influence of molecular

architecture and of bulk morphology on the physical properties of: (i)

diblock copolymers, (ii) binary blends of the corresponding homopolymers,

and (iii) binary and ternary blends of a diblock copolymer with either or

both of the corresponding homopolymers. In many cases the polymeric com-

ponents were selected so that both exhibited rubbery behavior (T>Tg) at

room temperature (1-7). Reasons for the selection of rubbery/rubbery

systems included the following: Relatively little attention has been given

to rubbery/rubbery diblock copolymers in spite of the fact that there are

numerous applications for blends of rubbery components. Furthermore, it

is likely that having both components of our block copolymers and polymer

blends in the amorphous rubbery state will helpto minimize nonequilibrium

effects which strongly influence the structure (3,9) and properties (10) of

glassy/glassy or, glassy/rubbery systems. Finally, rubbery/rubbery systems

based on diene polymers offer opportunites for investigation of changes

in molecular architecture in the absence of changes in chemical composition.

The purpose of the present paper is to provide a unified framework in

which to view the previous results and to provide guidance regarding the

formulation of rubbery/rubbery compositions with specified properties.

Results. A summary of some of the results of our investiqations are pre-

sented in Tables 1 and 2. The assessment of the homogeneity or hetero-

geneity of a particular material is always based on the combined information

from three types of experiments: (i) thermal analysis, (ii) dynamic mechanical

testing and (iii) transmission electron microscopy. Other researchers have
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also pointed out the need for applying a variety of techniques in the

examination of homogeneous and heterogeneous polymer blends (11). Table

1 describes results obtained on samples of either pure diblock copolymer

or simple binary blends of homopolymers. Table 2 on the other hand presents

data obtained for binary and ternary blends of certain diblock copolymers

(1,4 polybutadiene-b-cis 1,4 polyisoprene) with either or both of the

corresponding homopolymers. Previously (2,5), ternary composition dia-

grams based on the weight percentage of each of the three components

(diblock/l,4 polybutadiene homopolymer/cis 1,4 polyisoprene homopolymer)

were used to summarize results and to analyze trends in the data. For

reasons to be described below, the composition data provided in Table 2,

namely the mole fraction of polybutadiene repeat units in a blend and the

weight fraction of diblock in that blend, will be useful for obtaining a

clearer understanding of the behavior of these binary and ternary polymer

mixtures.

Discussion. Questions arise in considerinq whether or not the vast array

of data in Tables 1 and 2 can be explained in a concise and unified way.

For example is it reasonable that homopolymer blends of 1,4B and I are

heterogeneous whereas the corresponding 1,4B-b-I diblocks are homogeneous?

Likewise why are homopolymer blends of 1,4B and 1,2B, although uniform in

chemical composition (C4H6), heterogeneous in all proportions; the corres-

ponding 1,4B-b-l, 2B diblocks are heterogeneous at low molecular weights

and nearly equal block size, and become homogeneous as molecular weight

and block size disparity increase. N'hy do high vinyl polybutadiene

(vinyl B) and pure 1,2 polybutadiene (1,2M) both form homogeneous mix-

tures with cis 1,4 polyisoprene whereas all of the other polybutadiene
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microstructures (1,4B; cis B; trans B) form heterogeneous blends with cis

1,4 polyisoprene? Finally it is interesting that certain binary and ternary

mixtures (1,4B + I + 1,48-b-I diblock) are homogeneous and some are hetero-

geneous.

An understanding of some of the points mentioned above can be obtained

by considering the various theories (14,15,16) which have been developed to

describe microphase separation in block copolymers. Meier (14) pointed

out that as molecular weight is increased, homopolymers begin to form

heterogeneous mixtures earlier than the corresponding diblock copolymer;

an estimate of 2.5 to 5 was given for the ratio [critical molecular weight

for diblock domain formation]/[critical molecular weight for phase separa-

tion in homopolymer blends]. More recent work by Helfand (15) supports

this conclusion. Very recently Leibler (16) suggested that the critical

molecular weight ratio should be 10.5/2.0 = 5.25 under the reasonable

assumption that the segmental interaction parameter X is the same in the di-

block and the blend. With these ideas in mind, Figure 1 provides a unified

view of much of the data in Table 1. Certain samples, particularly the

1,4B-b-I diblocks and the blends of 1,4B and I, fall in the region in which

homogeneous block copolymer and heterogeneous blends are expected, thus

accounting for the earlier observations (Table 1, 2-5). Also in agreement

with Table 1, the 1,4B-b-l,2B diblocks closely follow the boundary between

the regions of homogeneous and heterogeneous blend behavior. Data for

blends of 1,2B and I and of vinyl B and I fall below the lower curve, i.e.

in the region of homogeneity for both block copolymers and polymer blends-

the corresponding diblocks are thus expected to be homogeneous but have

not yet been synthesized. Finally some points have been added to the graph

to indicate the location of representative polystyrene/polybutadiene block
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copolymers which have received considerable attention in the literature.

An explanation of the behavior of the binary and ternary blends of

Table 2 requires a three dimensional representation as shown in Figure 2.

The curve in the plane at the right side is the boundary between homoqene-

ous and heterogeneous diblocks (i.e. the upper curve in Figure 1) while

the left-most plane contains a similar boundary for pure homopolymer blends

(lower curve in Figure 1). Clearly the location of the boundaries on

intermediate planes, representing various weight percentages of diblock

copolymer (column 3 of Table 2), must vary smoothly between the position

on the right and on the left. At present a linear variation of this Position

with diblock weight percentage has been assumed. In this way, the behavior

of many of the blends in Table 3 can be explained by examining the planes

at 0.25, 0.50 and 0.75 weight fraction of diblock copolymer. These plots

are shown in Figurc 3. A more sophisticated method of representing these

plots, using three dimensional projections, has been worked out by Bates (13).

At present, all of te explanations are put forward on a semiquantitative

basis. What is needed for an absolute assignment of a vertical location of

any point in Figures 1-3 is a known value of Mcrit (the critical molecular

weight for phase separation of the block copolymer) or alternativelya XAB

value for each pair. Also the shapes of the boundaries are not necessarily

invariant with the choice of various A-B pairs or with the location of the

plane in Figure 2. Ongoing work is aimed at providing reasonable estimates

for the various values of Mcrit. We are also in the process of using

existing theories (15,17) to determine the sensitivity of the shape and

location of the various boundaries to such parameters as the Kuhn seament

length (15) and the interaction parameter XAB (17).
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Table I Summary of Results Obtained on Various Rubbery/Rubbery Diblock Copolymers

and Homopolymer Blends (1-6)

Com on nt ( ) C mp nen B a) Diblock Mole Molecular H m g n o s
Component____ _____CompnentB_(a or Blend Fraction A Weight 'b) Hmgnos

1,4B I Blend 0.296 133000 No

1,4B I Blend 0.5357 133000 No

1,4B I Blend 0.704 133000 No

1,4B I Diblock 0.500 250000 Yes

1,4B I Diblock 0.660 264000 Yes

1,4B I Diblock 0.340 270000 Yes

trans B I Blend 0.557 156000 No

cis B I Blend 0.557 416000 No

vinyl B I Blend 0.557 468000 Yes

1,2B I Blend 0.557 150000 Yes

1,4B vinyl B Blend 0.500 468000 No

1.48 1,2B Blend 0.200 100000 NoG

1,4B 1,2B Blend 0.625 100000 No

1,4B 1,2B Blend 0.880 100000 No

1,4B 1,2B Diblock 0.625 80000 No

1,4B 1,2B Diblock 0.769 130000 Yes

1,48 1,2B Diblock 0.833 180000 Yes

1,48 1,2B Diblock 0.869 230000 Yes

(a)1,48  polybutadiene (45% cis 1,4; 45% trans 1,4; 10% 1,2) ... I cis 1,4

polyisoprene...t-rans B = 6%' cis 1,4; 91%iv trans 1,4; 3% 1,2 ... cisB =92%

cis 1,4-, 4% trans 1,4, 4% 1 ,2 ... Vinyl B = 20', cis 1,4. 16", transl,4;

64% 1,2...1,2 B 99%, 1,2 polybutadiene (12,1)

(b)For homopolymer blends, the value given is the higher molecular weight;, for

diblock copolymers overall molecular weiht is nliven.
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Table 2 Summary of Results Obtained on Blends of Diblock Copolymers with the

Corresponding Homopolymers (2,5)

Mole Fraction of Wt. Fraction of
Type of Blend(a) 1,4B in Blend(b) Diblock in Blend(c) Homooeneous?

Binary: 1,4B + Diblock 3 0.836 0.250 Yes
Binary: 1,4B + Diblock 4 0.921 0.250 Yes
Binary: 1,4B + Diblock 3 0.853 0.250 No
Binary: I + Diblock 3 0.135 0.250 Yes
Binary: I + Diblock 4 0.184 0.250 No
Binary: I + Diblock 8 0.089 0.250 Yes
Ternary: 1,4B + I + Diblock 3 0.415 0.250 No
Ternary: 1,4B + I + Diblock 3 0.664 0.250 No
Ternary: 1,4B + I + Diblock 4 0.702 0.250 Njo
Ternary: 1,4B + I + Diblock 4 0.459 0.250 No
Ternary: 1,4B + I + Diblock 8 0.394 0.250 No
Ternary: 1,4B + I + Diblock 8 0.627 0.250 No
Binary: 1,4B + Diblock 3 0.76d 0.500 Yes
Binary: 1,4B + Diblock 4 0.839 0.500 Yes
Binary: 1,4B + Diblock 8 0.695 0.500 No
Binary: I + Diblock 3 0.262 0.500 Yes
Binary: I + Diblock 4 0.356 0.500 No
Binary: I + Diblock 8 0.175 0.500 Yes
Ternary: 1,4B + I + Diblock 3 0.528 0.500 No
Ternary: 1,4B + I + Diblock 4 0.611 0.500 No
Ternary: 1,4B + I + Dibkock 8 0.450 0.5Co No
Binary: 1,4B Diblock 3 0.636 0.750 Yes
Binary: 1,4B + Diblock 4 0.774 0.750 Yes
Binary: 1,4B + Diblock 8 0.525 0.750 No
Binary: I + Diblock 3 0.383 0.750 Yes
Binary: I + Diblock 4 0.516 0.750 No
Binary: I + Diblock 8 0.259 0.750 Yes
Ternary: 1,4B + I + Diblock 3 0.497 0.050 No
Ternary: 1,4B+ I + Diblock 3 0.497 0.100 No
Ternary: 1,4B + I + Diblock 3 0.497 0.200 No
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Table 2 Continued

Mole Fraction of Wt. Fraction of
Type of Blend(a) 1,4B in Blend (b) Diblock in Blend(c) Homoqeneous?

Ternary: 4B + I + Diblock 3 0.546 0.333 No

Ternary: l,4B + I + Diblock 3 0.497 0.400 No

Ternary: l,4B + I + Diblock 3 0.497 0.300 Yes

Ternary: l,4B + I + Diblock 4 0.598 0.333 No

Ternary: 1,4B + I + Diblock 8 0.339 0.200 No

Ternary: 1,4B + I + Diblock 8 0.498 0.333 No

Ternary: 1,4B + I + Diblock 8 0.339 0.400 No

Ternary: 1,4B + I + Diblock 8 0.339 0.600 No

Ternary: 1,4B + I + Diblock 8 0.339 0.800 No

(a)l = cis 1,4 polyisoprene (M = 133000)...I,4B = polybutadiene (45% cis 1,4; 45%

trans 1,4; 10% 1,2) (M = 120000)...Diblock 3 = 1,4B-b-I (II0000-b-140000)...

Diblock 4 = 1,4B-b-I (161000-b-103000)...Diblock 8 = 1,4B-b-I (72000-b-192000):

Careful HPSEC analysis of Diblock 8 shows that unlike the other two diblocks a

significant fraction ( 10% by weiqht) of 1,4B homopolymer is present in this

sample. This fact is not taken into account in the above tabulation nor in pre-

vious discussions of these data (2). However correcting for the homopolymer con-

tent would result in only minor chanqes above as follows: Column 1 - Diblock 8

must now be described as 1,4B-b-I + 10% 1,4B (78000-b-293000 + 10% of 78000 1,4B):

Column 2 - No changes. Column 3 - wt fraction diblock decreases slightly in all

cases, e.g. 0.750 becomes 0.675, 0.500 becomes 0.450, 0.250 becomes 0.225;

Column 4 - No changes.

(b)Mole fraction of 1,4B includes contribution from 1,4 polybutadiene moiety of the

diblock and from the 1,4 polybutadiene homopolymer, if any.

(c)[weight of diblock]/[weight of diblock plus homopolymer(s)]
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Figure Legends

Figure 1. Plot of the logarithm of reduced molecular weight against

composition for various diblock copolymers and homopolymer blends. Shapes

of the curves were calculated based on a modified version of Helfand's

Fortran program (15). Values of the critical molecular weight are not

precisely known for each AB pair but all data points for a given set are

,lotted correctly relative to each other. For example, knowing from Pre-

vious work (2-5) that homopolyer blends of 1,4B and I are heterogeneous

places the solid circle points (0) above the lower curve in this figure;

with this constraint the question arises whether or not the points (Q)

for the corresponding diblock copolymers of higher molecular weight fall

above (heterogeneous) or below (homogeneous) the upper curve. As seen in

the figure, the points fall below the upper curve, consistent with the pre-

vious experimental results (2-5) which indicated that these copolymers

are homoaeneous materials. Similar considerations apply to the relative

locations of the 1,2B/1,4B data points k ,U); the fact that one of the

diblocks was heterogeneous and the others were homogeneous is consistent

with the fact that all the data points for these copolymers fall close to

boundary between homogeneous and heterogeneous diblock copolymer behavior.

Figure 2. Schematic representation of a unified picture for explain-

ing the behavior of blends containina various proportions of homopolymer A,

homopolymer B and the corresponding A/B diblock copolymer. The plane at

the far right is for oure diblock and the minimum in the curve is located

at log M/Mcrit = 0. The minimum in the curve in the plane at the far left

(homopolymer blend in the absence of diblock) is located at log M/Mcrit -

log 2/10.5 = -0.720 (see references 15-17). In the absence of any quiding

theory, a linear variation with weiaht fraction of diblock has been assumed
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to describe the location of the minimum of the curve on intermediate planes.

Figure 3. Plots of data from Table 2 for three of the planes of

Figure 2 for the system 1,4B homopolymer, I homopolymer, 1,4B-b-I diblock.

In all cases the molecular weight of the binary or ternary blend was taken

to be that of the highest molecular weight component which was the block

copolymer in all cases. Figure 3a contains six data points corresponding to

the six different blends containing 75% diblock which were examined in the

previous experimental work (2-5). Figures 3b and 3c contain nine and twelve

points respectively corresponding to blends at 50% and 25% diblock. The

varying number of data points is a consequence of the way in which blends

were selected for study in the earlier work in which triangular composition

diagrams were employed for guidance in the experiments (5,2). Figure 3d

is a reduced composite plot of the three diagrams.
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